Cancer Risk in Adults Undergoing Radiotherapy

Lindsay M. Morton, PhD

Radiation Epidemiology Branch
Division of Cancer Epidemiology and Genetics

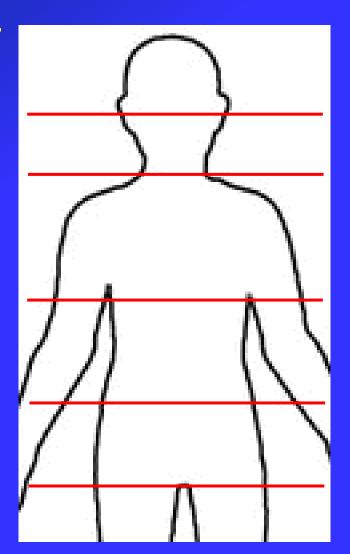
May 20, 2011

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Background: Ionizing Radiation

Ionizing radiation exposures	Magnitude of doses
Chest x-ray (chest)	0.0001 Gy
Mammogram (breast)	0.003 Gy
Abdominal CT scan (abdomen)	0.1 Gy
Radiotherapy	
Scatter to nearby organs	1-9 Gy
Tumor dose	10-70 Gy

Background: Radiotherapy


Benign conditions

Tinea capitis Hemangioma

Breast disease Ankylosing spondylitis

Peptic ulcer disease

Gynecologic disease

Cancer treatment

Brain/CNS

Oral cavity, Pharynx Thyroid, Larynx

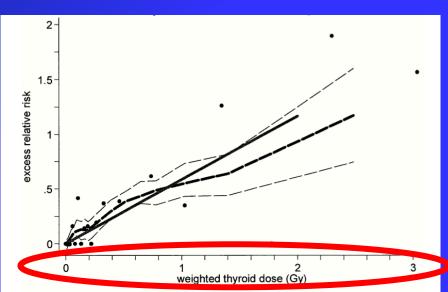
Female breast

Hodgkin lymphoma

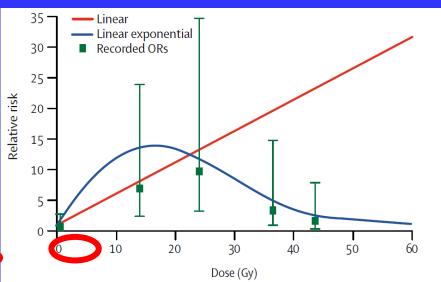
Testes (seminoma) Cervix, Endometrial Prostate, Anus

Background: Research Focus and Implications

- Magnitude of risk at higher doses
- Shape of the radiation dose-response relation
- Modifiers of radiotherapy-related risks
 - Age at exposure
 - Time since exposure
 - Attained age
 - Other cancer risk factors


Background: Research Focus and Implications

- Biology
 - Cancer etiology
 - Mechanisms of carcinogenesis
- > Clinic
 - Risk/benefit assessment for radiotherapy treatment
 - Long-term health of patients

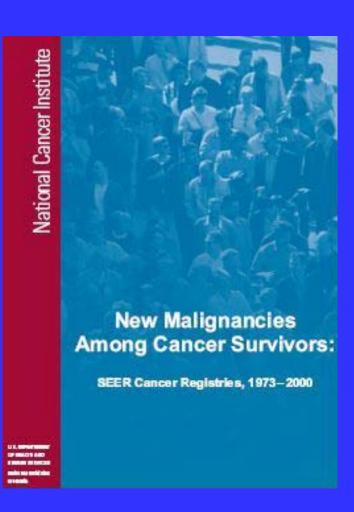

Background: Examples

 Importance of understanding dose-response relations across a wide range of doses

Thyroid cancer risk among atomic bomb survivors

Thyroid cancer risk after radiotherapy for childhood cancer

Preston et al. Radiat Res 2007


Sigurdson et al. Lancet 2005

Outline

- Study design
- Radiotherapy associated with increased risk of:
 - Highly radiosensitive malignancies
 - Leukemia
 - Breast
 - Other cancers
 - Lung
 - Upper gastrointestinal cancers (esophagus, stomach, pancreas)
- Future directions

Incidence of New Malignancies among <u>Cancer Survivors</u>

- → Data from population-based cancer registries
- → Long term follow-up (30+ yrs)
- + Large sample size
- No detailed treatment information
- No information on risk factors

Descriptive Study: Example

- Lung cancer risk after breast cancer RT (Zablotska and Neugut, Cancer 2003)
- 9 SEER registries, 1973-1998
- 260,541 women, 29% treated with RT

Time since	Post-mastectomy RT		Post-lumpectomy RT	
breast cancer	Ipsilateral	Contralateral	Ipsilateral	Contralateral
5-9 years	1.2	1.1	1.1	1.0
10-14 years	2.1*	1.1	0.8	1.3
15+ years	2.1*	1.2	-	-

^{*} P<0.05

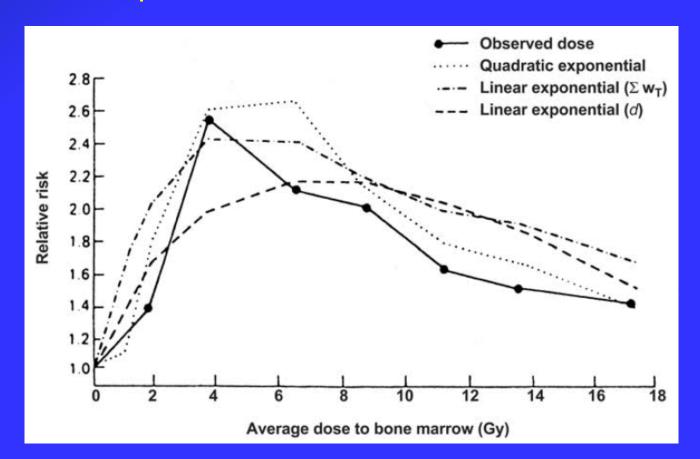
Case-Control Studies

- → Data abstracted from medical records
- → Detailed treatment information
 - → radiation dose-response relationship
 - possible confounding or effect modification by other treatments
- Resource intensive
- Minimal/incomplete information on other cancer risk factors

Outline

- Study design
- Radiotherapy associated with increased risk of:
 - Highly radiosensitive malignancies
 - Leukemia
 - Breast
 - Other cancers
 - Lung
 - Upper gastrointestinal cancers (esophagus, stomach, pancreas)
- Future directions

<u>Leukemia</u>


- Increased risk with radiotherapy (particularly pelvic):
 - endometrial (Curtis et al. JNCI 1994)
 - cervical cancer (Boice et al. JNCI 1987, Radiat Res 1988)
 - testicular cancer (Travis et al. JNCI 2000)
 - benign gynecologic disease (Inskip et al. Radiat Res 1993)
 - Hodgkin lymphoma (Kaldor et al NEJM 1990)
 - breast cancer (Curtis et al. NEJM 1992)

pooled study (Little et al. Radiat Res 1999)

Leukemia

- Lower relative risks in patients treated with radiotherapy than in the LSS
- Non-linear dose-response relation

Leukemia risk after cervical cancer (Boice et al. JNCI 1987)

<u>Leukemia</u>

- Disease subtypes
 - 3 radiogenic subtypes: AML risks > ALL, CML
 - -? risks for CLL
- Joint effects of radiation-related risks and:
 - Latency Higher risks in years immediately following exposure, then declines
 - Age Higher risks with younger age at exposure
 - Chemotherapy conflicting

Breast Cancer

- Increased risk with chest radiotherapy:
 - ankylosing spondylitis (Weiss et al. Int J Cancer 1994)
 - mastitis (Shore et al. JNCI 1986)
 - benign breast disease (Mattson et al. JNCI 1993, Br J Cancer 1995)
 - Hodgkin lymphoma (van Leeuwen et al. JNCI 2003, Travis et al. JAMA 2003)
 - cervical cancer (Boice et al. Radiat Res 1988)
 - breast cancer (Boice et al. NEJM 1992, Storm et al. JNCI 1992;
 WECARE study e.g., Stovall et al. Int J Radiat Oncol Biol Phys 2008)

pooled study (Preston et al. Radiat Res 2002)

Breast Cancer

- Radiation dose-response consistent with linearity
 - ERR/Gy estimates range from 0.06-0.4
 - LSS ERR/Gy (overall) = 1.5 (95%Cl 1.2-1.9)
- Joint effects of radiation-related risks and:
 - Age Higher risks with younger age at exposure
 - Other treatments reduced risk
 - Chemotherapy
 - Hormonal agents
 - Radiotherapy-induced ovarian ablation
 - Genetic susceptibility

<u>Outline</u>

- Study design
- Radiotherapy associated with increased risk of:
 - Highly radiosensitive malignancies
 - Leukemia
 - Breast
 - Other cancers
 - Lung
 - Upper gastrointestinal cancers (esophagus, stomach, pancreas)
- Future directions

Lung Cancer

- Increased risk with chest radiotherapy:
 - -ankylosing spondylitis (Weiss et al. Int J Cancer 1994)
 - peptic ulcer (Carr et al. Radiat Res 2002)
 - Hodgkin lymphoma (van Leeuwen et al. JNCI 1995, Travis et al. JNCI 2002, Gilbert et al. Radiat Res 2003)
- Radiation dose-response consistent with linearity
 - ERR/Gy estimates range from 0.05-0.4
 - -LSS ERR/Gy (overall) = 0.7 (95%CI 0.5-0.9)

Lung Cancer

- Joint effects of radiation-related risks and:
 - Cigarette smoking conflicting results
 - Multiplicative or supra-multiplicative (radiotherapy)
 - Additive (LSS)
 - Latency peak risk 10-25 years after exposure
 - Age no change in risk with increasing age
 - Chemotherapy no change in risk with cytotoxic chemotherapy

Upper Gastrointestinal (GI) Cancers

- Radiation → risk of upper GI cancers
 - Atomic bomb survivors
 - Cancer survivors (descriptive studies)
 - Radiotherapy for benign disease (e.g., ankylosing spondylitis)
- Sparse data: magnitude of risk and doseresponse relationship, effects at higher doses
- Second Primary GI Cancers in Cancer Survivors: An International Collaborative Study

7 Case-Control Studies

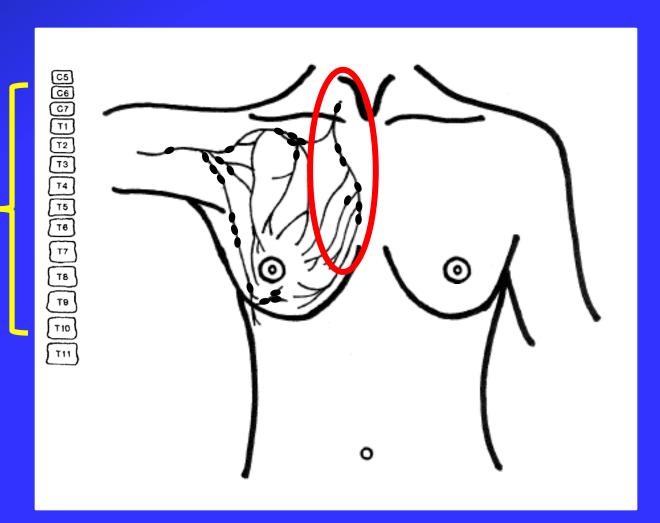
Second Cancer

Esophagus Stomach Pancreas Breast cancer X Hodgkin lymphoma X Testicular cancer X Cervical cancer

Second GI Cancers Study: Methods

- Nested case-control study
- ≥5 year survivors of breast cancer
- 5 population-based cancer registries
 - -1943-2003
 - Denmark, Finland, Sweden, Iowa, Ontario
- 316 cases with esophageal cancer after breast cancer
- 252 (80%) with available medical records

Second GI Cancers Study: Methods

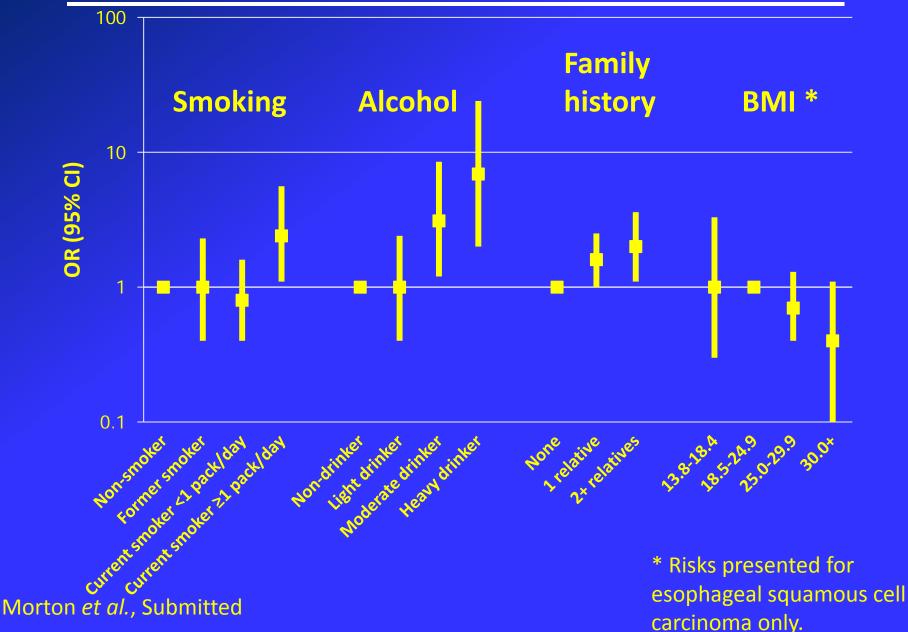

- 488 controls with breast cancer only, individually matched to cases (2:1)
 - Cancer registry
 - Age at breast cancer diagnosis (± 5 years)
 - Calendar year of breast cancer diagnosis (± 5 years)
 - Latency

Second GI Cancers Study: Methods

- Medical record abstraction
 - Breast/esophageal cancer diagnoses
 - Breast cancer treatment data
 - Radiotherapy, chemotherapy, hormonal agents
 - Smoking, alcohol, BMI, family history of cancer
- Detailed radiation dosimetry
- Conditional logistic regression analysis

Radiation Dosimetry

25 points of dose calculation along the esophagus



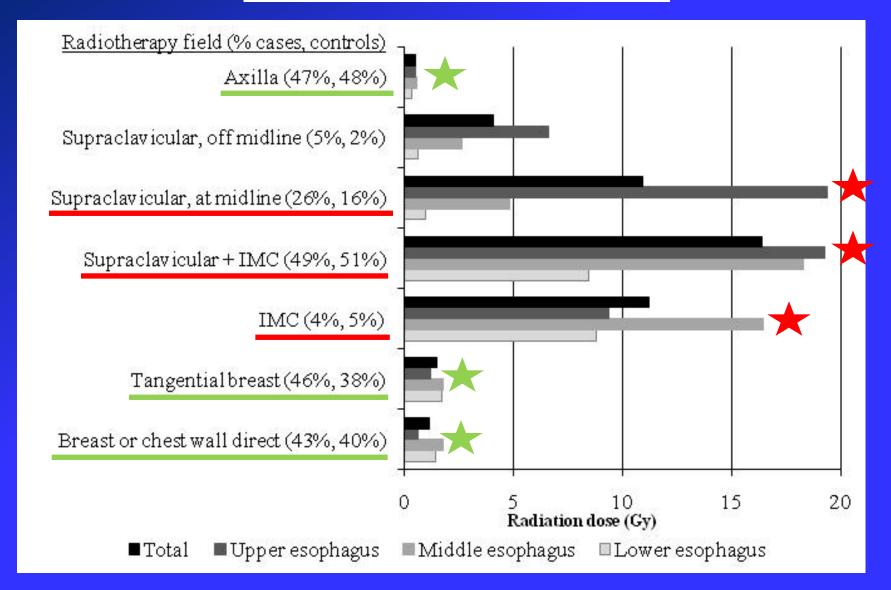
Results: Radiotherapy

	Cases	Controls	
Dose (Gy) *	N	N	OR(95% CI)
0	84	201	1.0 (referent)
0.1-4.9	47	117	0.9 (0.6 to 1.5)
5.0-9.9	22	35	1.6 (0.8 to 3.2)
10.0-19.9	20	31	1.9 (0.9 to 3.9)
20.0-29.9	48	60	2.8 (1.6 to 4.9)
30.0-44.5	19	13	4.9 (2.0 to 12)
P _{trend}			<0.001
EOR/Gy			0.08 (0.04 to 0.16)

^{*} Dose to the midpoint of the tumor.

Results: Non-Treatment Risk Factors

Comment


- First study to provide quantitative radiation dose estimates to the esophagus after radiotherapy for breast cancer
- Dose-response compatible with linearity
 - EOR/Gy = 0.08, lower than patients treated for ankylosing spondylitis or in the LSS
- Data consistent with multiplicative effect of radiation and other esophageal cancer risk factors

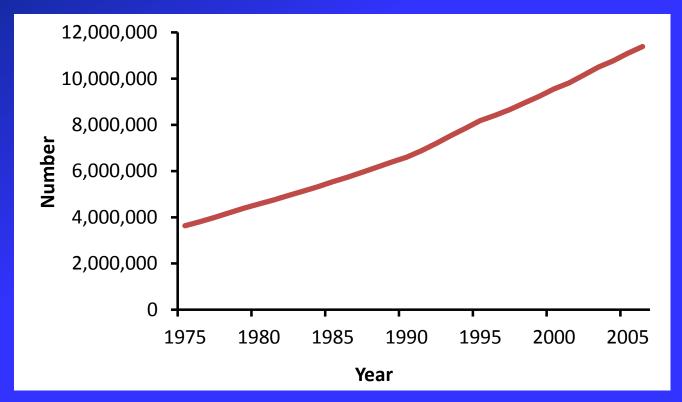
Comment

- Low absolute risk: 5 excess cases/1000 women due to radiation over 25 years
 - aged 60, receiving 30 Gy to the esophagus

- Consider dose to the esophagus in radiation treatment planning
- Provides quantitative information for risk/benefit calculation for radiotherapy
- Certain treatment practices have changed

Radiotherapy Fields

Comment


- Increased patient and clinician education regarding risks and symptoms of esophageal disease
- Lower threshold for endoscopy
 - ➤ Particularly for women with supraclavicular and IMC irradiation and other esophageal cancer risk factors

<u>Outline</u>

- Study design
- Radiotherapy associated with increased risk of:
 - Highly radiosensitive malignancies
 - Leukemia
 - Breast
 - Other cancers
 - Lung
 - Upper gastrointestinal cancers (esophagus, stomach, pancreas)
- Future directions

Second Cancers

• >11 million cancer survivors in the US

1 in 6 cancers diagnosed today in a cancer survivor

Second Cancer Risk Factors

- Radiotherapy accounts for ~8% of second
 Cancers (Berrington de Gonzalez et al. Lancet Oncol 2011)
- >90% second cancers related to:
 - other treatments
 - lifestyle factors
 - medical history
 - genetic susceptibility

Future Directions

- Understand effect modifiers to identify patients at highest risk of radiotherapy-related second cancer
 - New study designs to capture other risk factor data and biospecimens
- Other cancer sites requiring additional study (e.g., colon)
- Mechanisms of carcinogenesis following highdose radiation exposures

Acknowledgements

NCI

Amy Berrington de Gonzalez

Rochelle E. Curtis

Graca M. Dores

Joseph F. Fraumeni, Jr.

Ethel S. Gilbert

Ruth A. Kleinerman

Martha S. Linet

Preetha Rajaraman

North America

Eric J. Holowaty

Charles F. Lynch

Susan Smith

Marilyn Stovall

Lois B. Travis

Rita Weathers

<u>Europe</u>

Berthe M.P. Aleman

Michael Andersson

Sophie D. Fossa

Per Hall

Michael Hauptmann

Heikki Joensuu

Tom Børge Johannesen

Magnus Kaijser

Froydis Langmark

Eero Pukkala

Hans H. Storm

Flora E. van Leeuwen